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Equivalence of driven and aging fluctuation-dissipation relations in the trap model
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We study the nonequilibrium version of the fluctuation-dissipation~FD! relation in the glass phase of a trap
model that is driven into a nonequilibrium steady state by external ‘‘shear.’’ This extends our recent study of
aging FD relations in the same model, where we found limiting, observable independent FD relations for
‘‘neutral’’ observables that are uncorrelated with the system’s average energy. In this work, for such neutral
observables, we find the FD relation for a stationary weakly driven system to be the same, to within small
corrections, as for an infinitely aged system. We analyze the robustness of this correspondence with respect to
non-neutrality of the observable, and with respect to changes in the driving mechanism.
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I. INTRODUCTION

Glasses relax very slowly at low temperatures. Th
therefore remain out of equilibrium for long times and e
hibit aging @1#: the time scale for response to an extern
perturbation~or for the decay of correlations! increases with
the ‘‘waiting time’’ tw since the system was quenched to t
low temperature, and thus eventually far exceeds the exp
mental time scale. Time translational invariance~TTI! is lost.
As a result of this dynamical sluggishness, glassy syst
are highly susceptible to external driving, even when
driving rateġ is small. One example ofġ is shear rate in a
rheological system. Typically, steady driving interrupts ag
and restores a nonequilibrium steady~TTI! state in which the
time scale defined by the inverse driving rate plays a r
analogous to the waiting timetw of the aging regime@2–8#.

Aging and driven glasses, in general, violate the equi
rium fluctuation-dissipation theorem~FDT! @9#. Consider the
autocorrelation function for a generic observablem, defined
as C(t,tw)5^m(t)m(tw)&2^m(t)&^m(tw)&. The associated
step response functionx(t,tw)5* tw

t dt8R(t,t8) tells us how

m responds to a small steph(t)5hQ(t2tw) in its conjugate
field h. In equilibrium, C(t,tw)5C(t2tw) by TTI ~similarly
for x), and the FDT reads2(]/]tw)x(t2tw)5R(t2tw)
5(1/T)(]/]tw)C(t2tw), where R(t2tw ,tw)5(d^m(t)&/
dh(tw))uh50 is the impulse response function andT is the
thermodynamic temperature.~We setkB51.! A parametric
‘FD plot’ of x vs C is thus a straight line of slope21/T.

Out of equilibrium, violation of FDT is measured by a
FD ratio,X(t,tw), defined through@10,11#

2]/]twx~ t,tw!5R~ t,tw!5
X~ t,tw!

T
]/]twC~ t,tw!. ~1!

In aging systems, violation (XÞ1) can persist even at lon
times, indicating strongly nonequilibrium behavior ev
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though one-time observables such as entropy may h
settled to essentially stationary values. Similarly, driv
glassy systems can violate FDT even in the limit of we
driving.

Remarkably, the FD ratio in several aging mean fie
models@10,11# assumes a special form at long times. Taki
tw→` and t→` at constantC5C(t,tw), X(t,tw)→X(C)
becomes a~nontrivial! function of the single argumentC. If
the equal-time correlatorC(t,t) also approaches a consta
C0 for t→`, it follows that:

x~ t,tw!5
1

TEC(t,tw)

C0
dCX~C!. ~2!

Graphically, this limiting nonequilibrium FD relation is ob
tained by plottingx vs C for increasingly large times. From
the slope2X(C)/T of the limit plot an effective temperatur
@12# Teff(C)5T/X(C) can be defined. Throughout this pa
per, we absorb the factorT into the response function so tha
an equilibrium FD plot has slope21.

In the most general aging scenario, a system displays
namics on several characteristic time scales, each with
own functional dependence ontw . If these time scales be
come infinitely separated astw→`, they form a set of dis-
tinct ‘‘time sectors.’’ In mean field,Teff(C) is a constant
within each sector@11#, andindependentof the observablem
used to construct the FD plot. These properties have
been observed in some lower-dimensional~non mean field!
systems@1,13#.

Cugliandoloet al. @12# proposed that an equivalent limit
ing nonequilibrium FD relation should hold in slowlydriven

glassy systems (ġ→0), and that the corresponding effectiv
temperaturesTeff(C,ġ→0) andTeff(C,tw→`) should coin-
cide. Although this is believed to apply widely among drive
glasses, the evidence supporting it, to date, is limited to
two detailed studies of Berthieret al. in mean field@2# and in
simulations of sheared Lennard Jones particles, initially
Ref. @14# and later, with a study of observable independen
in Refs.@16,15#. We note that FDT has also been studied in
©2003 The American Physical Society01-1
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driven phase separating model (T,Tc , whereTc is the criti-
cal temperature! with N nonconserved order parameters
the largeN limit @17#, although here the drive does not inte
rupt aging. In this study, in the time sector with stationa
dynamics, the FD plot is of trivial equilibrium form forġ
50 but a nontrivial curve forġ.0; in the aging sector, the
response function is a constant, giving a flat FD plot.

In this paper, therefore, we study FDT in the driven
gime of Bouchaud’s trap model@18–20,7#, for which corre-
lation and response functions can be calculated exactly.
will allow a comparison with our recent study@21# of the
aging trap model, where we found limiting FD relations th
are observable independent for ‘‘neutral observables’’ t
are uncorrelated with the system’s energy. This is consis
with the mean field work, for which observables are usua
defined in terms of random couplings, uncorrelated with
average energy.~In coarsening models, similar argumen
have been used to exclude observables correlated with
order parameter@22#.! Surprisingly, however, we found th
FD plot to be a continuous curve even though the model
just one time sector, with relaxation timesO(tw). Although
this finding is apparently at odds with the mean field pred
tions, it is likely to result from the fact that the trap mod
has a broad distribution of relaxation times~all within its
single time sector!. We will return to this point in the con-
clusion.

In what follows, our central result will be thatthe same
nontrivial FD relation is found~to within logarithmic correc-
tions!, even when the trap model is weakly driven accord
to the mechanism proposed in Ref.@7#. Although the curva-
ture of the FD plot obviously excludes a constant effect
temperature, our finding is still consistent with the pred
tions of Cugliandoloet al. insofar asthe relationship be-
tween correlation and response is the same for aged
weakly driven glasses. This finding is nontrivial since the
shapes of the relaxation spectra for the aging and we
driven trap models differ strongly from each other.

We start~Sec. II! by defining the trap model and summ
rising the aging FD predictions of Ref.@21#. We then~Sec.
III ! derive exact expressions for the autocorrelation and
sponse functions for an arbitrary observablem in the steadily
driven regime. Using these, we calculate the limiting driv
FD relation, for neutral observables that are uncorrela
with the average energy. We show that this relation is
same~to within logarithmic corrections! as its aging counter
part ~Sec. IV!. We then~Sec. V! consider robustness of thi
correspondence with respect to~i! changes in the driving
mechanism and~ii ! non-neutrality of the observable, befo
concluding.

II. THE TRAP MODEL; DRIVING

The trap model@18# comprises an ensemble of uncoupl
particles exploring a spatially unstructured landscape
~free! energy traps by thermal activation. The tops of t
traps are at a common energy level and their depthsE have a
‘‘prior’’ distribution r(E) (E.0). A particle in a trap of
depthE escapes on a time scalet(E)5t0exp(E/T) and hops
into another trap, the depth of which is drawn at rand
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from r(E). The probability,P(E,t), of finding a randomly
chosen particle in a trap of depthE at time t thus obeys

] tP~E,t !52t21~E!P~E,t !1Y~ t !r~E! ~3!

in which the first~second! term on the RHS~right-hand side!
represents hops out of~into! traps of depthE, and Y(t)
5^t21(E)&P(E,t) is the average hopping rate.

For the specific choice of prior distributionr(E)
;exp(2E/Tg), the model shows a glass transition at
temperatureTg . This is seen as follows. At a temperatureT,
the equilibrium state~if it exists! is Peq(E)}t(E)r(E)
}exp(E/T)exp(2E/Tg). For temperaturesT<Tg this is un-
normalizable, and cannot exist; the lifetime averaged o
the prior ^t&r is infinite. Following a quench toT<Tg , the
system never reaches a steady state, but instead ages
can be seen from the time evolution ofP(E,tw), which can
be obtained exactly from Eq.~3! ~with Y(tw) determined
self-consistently by enforcing normalization ofP(E,tw)
@18,19#!. At large timestw→` a scaling limit is reached in
which P(t,tw)5@T/t(E)#P(E,tw) is concentrated entirely
on traps of lifetimet5O(tw): the scaling distributionP̃(z)
5TP(E), where z5E/T2 ln(tw) is shown in Fig. 1. The
model thus has just one characteristic time scale, wh
grows linearly with the agetw . @In contrast, forT.Tg all
relaxation processes occur on time scalesO(t0).# In what
follows, we rescale all energies such thatTg51, and times
so thatt051.

Driving was first incorporated into the model in order
study the rheology of ‘‘soft glassy materials.’’ Although w
are not directly interested in rheology here, we use the sa
driving rules which are defined as follows. Each particle
assigned its own local elastic ‘‘strain’’l, with a correspond-
ing ‘‘stress’’ kl. Each time the particle hops,l is set to zero.
Between hops,l̇ 5ġ whereġ is the rate of external driving
~‘‘straining’’ !. A particle in a trap of depthE strained byl
sees a reduced effective energy barrierE2 1

2 kl2, so that

DtP~E,l ,t !52t21~E!ekl2/2TP1Y~ t !r~E!d~ l !. ~4!

FIG. 1. Scaled energy distributions for~i! the aging model at
tw5103, 104, 105, 106 ~dashed lines! and~ii ! the driven model for

ġ51023, 1024, 1025, 1026 ~solid lines; differentġ values indis-
tinguishable!. The temperatureT50.3.
1-2
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EQUIVALENCE OF DRIVEN AND AGING . . . PHYSICAL REVIEW E67, 011101 ~2003!
In this equation,t21(E)ekl2/2T is the strain-enhanced coun
terpart of the ‘‘bare’’ activation ratet21(E) defined above
for the undriven model, andDt is the convected derivative
Dt5] t1ġ] l . Equation~4! ~integrated onl ) reduces to Eq.
~3! for ġ50, as required. In the following we rescalel such
that k51.

For steady driving (ġ5const) aging is interrupted, and
TTI steady state is restored. To write down the steady-s
distribution, defineS( l 1 ,l 2 ,E) as the probability for a par
ticle that starts off with strainl 1 and in a trap of depthE not
to hop until its strain has reachedl 2. From Eq.~4!, this is

S~ l 1 ,l 2 ,E!5expF2
1

t~E!ġ
E

l 1

l 2
dl expS l 2

2TD G . ~5!

In terms of this quantity, the steady-state distribution of E
~4! can then be written as

P`~E,l !5
Y`

ġ
r~E!S~0,l ,E!. ~6!

Here Y`;ġ12T is the steady-state average hopping ra
which can be determined self-consistently by enforcing n
malization ofP`(E,l ). @This is most conveniently done b
changing variables tot5exp(E/T) which gives r(t)
;t212T.# In the limit ġ→0, the energy distribution
P`(E)5*dl P`(E,l ) approaches a scaling limit in which a
relaxation times areO(1/ġ). The scaling distribution
P̃`(z)5TP`(E), where z5E/T1 ln(ġ) differs strongly
from its aging counterpartP̃(z), as shown in Fig. 1.

III. CORRELATION AND RESPONSE

FDT can be studied by assigning to each trap, in addit
to its depthE, a value for an~arbitrary! observablem @21#.
The trap population is then characterized by the joint pr
distributions(muE)r(E), wheres(muE) is the distribution
of m across traps of given fixed energyE. The dynamics then
obey

DtP~E,m,l ,t !52t21~E,m!ekl2/2TP

1Y~ t !r~E!d~ l !s~muE!, ~7!

where the activation times are modified by a small fieldh
conjugate tom as t(E,m)5t(E)exp(mh/T). This particular
form of t(E,m) is one of several possible choices that
maintain detailed balance under zero-driving conditio
@20,23#. We adopt it because, in the spirit of the unperturb
model (h50), it ensures that the jump rate between any t
states depends only on the initial state, and not the final

In Ref. @21# we derived exact expressions for the two-tim
autocorrelation and step response functions,C(t,tw) and
x(t,tw) in the aging regime (tw→`, t→` at fixed t/tw) of
the undriven model (ġ50), following a quench into the
glass phase at timetw50 from an initially infinite tempera-
ture. Each comprises two components that depend separ
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upon the functional forms of the meanm̄(E) and variance
D2(E) of the distributions(muE). For the purposes of this
paper we are interested only in observables withm̄(E)50
and ~within these! mainly the neutral observable for whic
the variance is uncorrelated with energyD2(E)5const[1.
In this case, in the simultaneous limittw→` with t→`,
C(t,tw) andx(t,tw) depend on time only through the scalin
variable (t2tw)/tw as shown in Figs. 2~a!, 2~b!. The corre-
sponding FD plot is shown in Fig. 2~c!.

In the steadily driven regime, TTI is restored:C andx do
not depend explicitly upon the waiting timetw but only on
the measurement intervalt2tw , so we settw50 without
loss of generality. For observables withm̄(E)50, the auto-
correlation function is exactly

C~ t,ġ !5E
ġ t

`

dlE
0

`

dED2~E!P`~E,l !. ~8!

This can be understood as follows. When any particle ho
its new value ofm is uncorrelated with the old one. At tim
t, therefore, only those particles that have not hopped s
t50 can contribute to the correlator, with weightD2(E).
The fraction of such particles which had strainl and trap
depthE at time t50 is P`(E,l )S( l ,l 1ġt,E). From Eq.~4!

this equalsP`(E,l 1ġt) and integration onl andE gives the
result, Eq.~8!. @Alternatively, Eq.~8! can be understood by
recalling the driving dynamics: upon any hop, each parti

FIG. 2. ~a! correlator and~b! response vs. scaled time for th
neutral observableD2(E)51 in the driven model~solid lines! and
aging model~dashed lines!, calculated from the exact analytica
expressions in the text and in Ref.@21#. For the aging case, waiting
times tw5103, 104, 105, 106 are shown~but are indistinguishable

from each other!; for the driven case shear ratesġ51023, 1024,
1025, 1026 are shown~also indistinguishable!. As an independent

check, we also show the driven correlator and response aġ
51023 calculated from waiting time Monte Carlo simulation. ForC
this is indistinguishable from the exact results forC in ~a!; for x it
appears as the jagged line in~b!. ~c! FD plots of correlator vs.
response for the driven case~solid lines! and aging case~dashed
lines! constructed from the exact results of~a!,~b!; the inset is
zoomed on a small region of the main plot. For the driven c
~solid lines!, driving rate decreases downwards at fixedC. The tem-
peratureT50.3.
1-3



ra
ha
s

on-
he
an

S. M. FIELDING AND P. SOLLICH PHYSICAL REVIEW E67, 011101 ~2003!
resets its local strain to zero; between hops, the local st
affinely follows the applied one. Therefore, the particles t
have not hopped sincet50 are just those that have strain
l>ġt.#
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The corresponding switch-on response function has c
tributions from both hopped and unhopped particles. T
contribution from hopped particles can be expressed as
integral over the last hop time of each particle,t8:
xhop~ t,ġ !5]huh50E
2`

`

dmE
0

`

dEE
0

t

dt8Y~h,t8!ms~muE!r~E!expF2
1

ġt~E,m!
E

0

ġ(t2t8)
dsexpS s2

2TD G . ~9!
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In this expression,Y(h,t)5Y`1O(h) is the fraction of par-
ticles that last hopped at timet8. Of these, a proportion
s(muE)r(E) chose energyE and magnetizationm. The sub-
sequent survival probability over the intervalt850•••t is
encoded by the exponential factor. In principle, the differe
tiation on h has two contributions: one from the facto
t(E,m) in the exponential, and the other fromY(h,t). How-
ever, the second gives zero, since*2`

` ms(muE)50 for the
zero-mean variables considered here. Adding the contr
tion from particles that have not hopped sincet50, and
doing some manipulation, we find finally the exact result

x~ t,ġ !5E
0

`

dEE
0

`

dl
D2~E!

ġt~E!
@P`~E,l !

2P`~E,l 1ġt !#E
0

l

dsexpS s2

2TD ~10!

~into which we have absorbed a factorT, as described
above!.

IV. FD PLOTS

Using the exact expressions of Eqs.~8! and~10!, we cal-
culatedC(t,ġ) and x(t,ġ) numerically for the neutral ob
servable,D2(E)51. As an independent check, we calculat
each quantity by direct simulation, using a waiting tim
Monte Carlo technique. The results are shown in Figs. 2~a!,
2~b!. In the limit ġ→0, t→0 at fixedġt, C(t,ġ) andx(t,ġ)
depend onġ and t only through the scaling variableġt.
Analytically, this can be seen for the correlator by substit
ing Eq. 6 into Eq. 8 and integrating ondE by changing
variables tot, as described above. Theġ dependence from
the integral exactly cancels the prefactorY` /ġ so that the
only dependence onġ andt appears through the scaling var
able ġt in the limit of the integral onl. A similar argument
applies to the response function.

The scaling functionsC(ġt) and x(ġt) both differ
strongly from their aging counterparts@compare the solid
and dashed lines in Figs. 2~a!, 2~b!#. This is to be expected
due to the obvious difference between the~scaled! energy
distributions of the driven and undriven models. Remarka
however, the driven FD relationx(C) is strikingly similar to
its undriven counterpart@Fig. 2~c!#. Both start with a slope
-

u-

-

y,

2X(C51)[x8(C51)521 ~thus reproducing the equilib
rium FD form in this limit! and finish with a slopex8(C
50)50 at an interceptx(C50)5T. ~We have confirmed
these features analytically as well as numerically.! Even be-
tween these limits, these is little discernible difference b
tween the aging and driven FD plots. This nontrivial result
consistent with the predictions of Cugliandoloet al., that the
relationship between correlation and response should be
same in weakly driven and old aging glassy systems.

In the inset of Fig. 2~c!, we show an expanded region o
the main FD plot. Despite the striking similarity of the agin
and driven FD relations, our numerics do nonetheless s
gest a small discrepancy. To investigate this further, we
amined the behavior ofX[2x8(C) in the limit C→0. Set-
ting (t2tw)/tw5u for the aging model, we foundC;u2T

andX;u21, henceX;C1/T asu→`. Settingġt5v for the
driven model, we found C;vT21exp(2v2/2) and X
;exp@2v2/2T#, hence C;XT@ ln(1/X)# (T21)/2 as v→`.
Therefore, the driven and aging FD plots are indeed equ
lent in the limit C→0, but only to within minor logarithmic
corrections. This explains the slight discrepancy seen in
numerical data.

V. ROBUSTNESS UNDER CHANGE OF DRIVING
MECHANISM; NON-NEUTRAL OBSERVABLES

We now investigate the robustness of the equivalence
tween driven and aging FD relations with respect to~i! non-
neutrality of the observablem, and ~ii ! changes in driving
mechanism. We start with~i!, considering observables fo
which D2(E)5exp(nE/T) ~which definesn), though still
with m̄(E)50. In this case, the overall amplitude~initial
value! of the correlator depends explicitly on the waitin
time ~or driving rate!, even in the aging~or weakly driven!
limit. In order to obtain a limiting FD plot, the correlator an
response must be normalized by the initial value of the c
relator. In the driven regime, therefore, we now plotx̃(t,ġ)
[x(t,ġ)/C(0,ġ) versusC̃(t,ġ)5C(t,ġ)/C(0,ġ), with t as
the plotting parameter. In the aging case, for these n
neutral observables, care must be taken in constructing
FD plot. For neutral observables, the usual prescription is
plot x(t,tw) versusC(t,tw) with t as the plotting parameter
For non-neutral observables, however, we see from Eq.~1!
that the slope of the FD plot is only guaranteed to coinc
with X if we plot x̃(t,tw)[x(t,tw)/x(t,t) versusC̃(t,tw)
1-4
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EQUIVALENCE OF DRIVEN AND AGING . . . PHYSICAL REVIEW E67, 011101 ~2003!
[C(t,tw)/C(t,t) with tw as the plotting parameter. ~This
coincides with the usual prescription for neutral observab
as required.! These normalized FD plots are shown forn
50.2 in Fig. 3, and are seen to differ strongly from ea
other: equivalence of aging and driven FD relations does
hold in the trap model for non-neutral observables.

Finally, we consider robustness of the equivalence of
ing and driven FDT with respect to a change in the drivi
mechanism. To do this, we consider a different drivi
mechanism which adds an additional hopping process to
trap model whose rateġ is independent of trap depth. Th
just has the effect of normalizing each hopping rate acco
ing to 1/t→1/t1ġ. The dynamics are now

] tP~E,m,t !52F 1

t~E,m!
1ġGP1Y~ t ! r~E!s~muE!

~11!

with a steady-state energy distribution given by

P`~E!5
Y`r~E!

t21~E!1ġ
. ~12!

The calculation of correlation and response functions is n
trivial since all survival probabilities are simple expone
tials; one finds

C~ t,ġ !5E
0

`

dED2~E!P`~E!expF2S 1

t~E!
1ġ D t G ,

~13!

and

FIG. 3. FD plots for ~i! the aging model witht5106, 107

~dashed lines; differentt values indistinguishable!, and ~ii ! the

driven model withġ51023, 1024, 1025, 1026 ~solid lines; differ-

ent ġ values indistinguishable! for a non-neutral observable wit

m̄(E)50, D2(E)5exp(nE/T) for n50.2. The temperatureT
50.3.
01110
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x~ t,ġ !5E
0

`

dED2~E!P`~E!
1

11ġt~E!

3H 12expF2S 1

t~E!
1ġ D t G J . ~14!

The FD plot for the neutral observableD2(E)51 is given in
Fig. 4, and seen to differ strongly from the corresponding
plot in the undriven model. Hence, the equivalence of
aging and driven FD relations is not preserved for t
change of driving mechanism. However, this is likely to be
consequence of the fact that this second choice of driv
mechanism does not in fact violate detailed balance,
merely renormalises all the jump rates.

VI. SUMMARY AND CONCLUSION

In this paper we studied the nonequilibrium FDT in th
glass phase of Bouchaud’s trap model@18–20,7#, extended
to incorporate the nonlinear driving mechanism of Ref.@7#.
After deriving exact expressions for the correlation and
sponse functions of a generic observable,m, we compared
the FD relation for a system driven steadily at rateġ→0
with that for an aging system at waiting time 1/ġ. For ‘‘neu-
tral’’ observables that are uncorrelated with the system’s
erage energy, the driven and aging FD relations are the sa
to within minor logarithmic corrections. This corresponden
does not apply to non-neutral observables. Finally, we c
sidered an alternative driving mechanism that renormal
all the hopping rates according to 1/t→1/t1ġ. In this case,
the aging and driven FD relations differ strongly, even f
neutral observables. Although this is apparently at odds w
our central result, it is likely to result from the fact that th
trivial driving mechanism does not violate detailed balan
Further research is certainly needed, however, to unders
whether other conditions are required on driving mechanis

FIG. 4. FD plots for the neutral observable withm̄(E)50,
D2(E)51 for ~i! the aging model witht5103, 104, 105, 106

~dashed lines; differentt values indistinguishable! and ~ii ! a driven

model with the alternative driving dynamics of Eq.~11! for ġ
51023, 1024, 1025, 1026 ~dot-dashed lines!. The temperatureT
50.3.
1-5
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in order to get steady-state behavior related to that of
driven aging systems.

We return finally to address the fact that the FD relatio
are rounded in this model, thus excluding a single effect
temperature within the aging or driven time sectors~with
relaxation timesO(tw) or O(ġ), respectively!. Similarly
‘‘rounded’’ FDT plots have recently been found in coarse
ing models at criticality@24#; the limiting value2X` of the
slope forC→0 was there shown to be a universal amplitu
ratio. It is possible that at least thisX` could define a sen
sible Teff , and in fact both our limiting FDT plots~for the
first driving mechanism! share a common valueX`50.

In conclusion, the FD relation between correlation a
response is the same, to within logarithmic corrections, in
aging and driven trap models. We suggest that the limit
iti
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value2X` of the slope forC→0 could be used to define a
effective temperature. Further work is needed to deline
more fully the class of finite-dimensional driven glassy mo
els that exhibit this behavior.

Note added. We have recently become aware that Ludov
Berthier has studied FDT in the driven EA model, and fou
FD plots the same as in the aging model, with agreem
between two different observables~unpublished!.
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