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Equivalence of driven and aging fluctuation-dissipation relations in the trap model
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We study the nonequilibrium version of the fluctuation-dissipatfel) relation in the glass phase of a trap
model that is driven into a nonequilibrium steady state by external “shear.” This extends our recent study of
aging FD relations in the same model, where we found limiting, observable independent FD relations for
“neutral” observables that are uncorrelated with the system’s average energy. In this work, for such neutral
observables, we find the FD relation for a stationary weakly driven system to be the same, to within small
corrections, as for an infinitely aged system. We analyze the robustness of this correspondence with respect to
non-neutrality of the observable, and with respect to changes in the driving mechanism.
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[. INTRODUCTION though one-time observables such as entropy may have
settled to essentially stationary values. Similarly, driven

Glasses relax very slowly at low temperatures. Theyglassy systems can violate FDT even in the limit of weak
therefore remain out of equilibrium for long times and ex- driving.
hibit aging [1]: the time scale for response to an external Remarkably, the FD ratio in several aging mean field
perturbation(or for the decay of correlationsncreases with models[10,11] assumes a special form at long times. Taking
the “waiting time” t,, since the system was quenched to thet,,— andt—o« at constantC=C(t,t,), X(t,t,)—X(C)
low temperature, and thus eventually far exceeds the experbecomes d@nontrivial) function of the single argumer@. If
mental time scale. Time translational invariai€@l) is lost.  the equal-time correlato€(t,t) also approaches a constant
As a result of this dynamical sluggishness, glassy system&, for t—o, it follows that:
are highly susceptible to external driving, even when the

driving ratey is small. One example of is shear rate in a 1[G
rheological system. Typically, steady driving interrupts aging xX(tty) = T clt )dCX(C)' 2
and restores a nonequilibrium steddy'l) state in which the o

time scale defined by the inverse driving rate plays a roleG . T I L

S . . raphically, this limiting nonequilibrium FD relation is ob-
anaAIoi%ou;rfg Ejhrievévnaltllr;%stlesnhvir?f Z]r?e?zglm\%or; ?('amtﬁi_j]'ui"b_tained by plottingy vs C for increasingly large times. From
_ AgIng ana en gla: N9 ’ ne eq the slope— X(C)/T of the limit plot an effective temperature
rium fluctuation-dissipation theore(®DT) [9]. Consider the

autocorrelation function for a generic observatiiedefined [12] Te“(%):y)r(l(cf) can be ?]eflned. Thro;Jgho.ut this Ea'
as C(t,t,) = (M(t)m(t,)) —(m(0))(m(t,)). The associated per, we absorb the factdrinto the response function so that

: A , an equilibrium FD plot has slope 1.
step response funCtIO}@(t,tW)—ftht R(t,t") tells us how In the most general aging scenario, a system displays dy-

m responds to a small stéyft) =hO(t—t,,) in its conjugate  namics on several characteristic time scales, each with its
field h. In equilibrium C(t,t,,)=C(t—ty,) by TTI (similarly  own functional dependence d. If these time scales be-
for x), and the FDT reads-(d/dt,) x(t—t,)=R(t—ty)  come infinitely separated as—, they form a set of dis-
=(1/m)(alat,)C(t—ty), where R(t—ty,ty)=(m(t))  tinct “time sectors.” In mean fieldTo4(C) is a constant
oh(tw))lh-o is the impulse response function afidis the  within each sectof11], andindependentf the observablen
thermodynamic temperatur@/Ve setkg=1.) A parametric  ysed to construct the FD plot. These properties have also

‘FD plot’ of x vs Cis thus a straight line of slope 1/T. been observed in some lower-dimensiofradn mean fiely
Out of equilibrium, violation of FDT is measured by an systemq1,13).
FD ratio, X(t,t,,), defined througl10,11] Cugliandoloet al.[12] proposed that an equivalent limit-

ing nonequilibrium FD relation should hold in slowtiriven
alot,C(t,ty). (1) glassy systems§(—>0), and that the corresponding effective

temperatured ¢¢(C,y—0) andTx(C,t,—) should coin-
In aging systems, violation{# 1) can persist even at long cide. Although this is believed to apply widely among driven
times, indicating strongly nonequilibrium behavior evenglasses, the evidence supporting it, to date, is limited to the
two detailed studies of Berthiet al.in mean field 2] and in
simulations of sheared Lennard Jones particles, initially in
*Electronic address: physf@irc.leeds.ac.uk Ref.[14] and later, with a study of observable independence,
TElectronic address: p.sollich@mth.kcl.ac.uk in Refs.[16,15. We note that FDT has also been studied in a

X(t,ty)

—aldtux(tty) =R(tty) = —
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driven phase separating mod@l<{T., whereT, is the criti-

cal temperatunewith N nonconserved order parameters in

the largeN limit [17], although here the drive does not inter-

rupt aging. In this study, in the time sector with stationary P(@

dynamics, the FD plot is of trivial equilibrium form foy

=0 but a nontrivial curve for>0; in the aging sector, the
response function is a constant, giving a flat FD plot. P2

In this paper, therefore, we study FDT in the driven re-
gime of Bouchaud’s trap mod€18-20,7, for which corre-
lation and response functions can be calculated exactly. This
will allow a comparison with our recent stud@1] of the
aging trap model, where we found limiting FD relations that
are observable independent for “neutral observables” that g 1. scaled energy distributions féi) the aging model at
are uncorrelated with the system’s energy. This is consistent —1?, 1¢#, 1%, 10° (dashed linesandi(ii) the driven model for
W|th the.mean field work, for wh|qh observables are u_sually;y: 1073, 1074, 10°5, 10°° (solid lines; differenty values indis-
defined in terms of random couplings, uncorrelated with thetinguishable:. The temperatur@ = 0.3.
average energy(ln coarsening models, similar arguments
have been used to exclude observables correlated with the . __
order parametef22].) Surprisingly, however, we found the fom p(E). The _probablhty,P(E,t), Of_ finding a randomly
FD plot to be a continuous curve even though the model haghosen particle in a trap of depfhat timet thus obeys
just one time sector, with relaxation timéx't,,). Although
this finding is apparently at odds with the mean field predic- P(E,t)=—7"YE)P(E,t)+ Y(t)p(E) 3
tions, it is likely to result from the fact that the trap model
has a broad distribution of relaxation timéall within its
single time sectgr We will return to this point in the con-
clusion.

In what follows, our central result will be thaihe same For th i hoi f orior distributi E
nontrivial FD relation is foundto within logarithmic correc- or the Specific choice ot prior distribu '9?’( )
tions), even when the trap model is weakly driven accordingNeXp(_E/Tg)’ the_ ”_‘Ode' shows a glass transition at a
to the mechanism proposed in RET]. Although the curva- temperaturél . This is seen as follows. At a temperattre

: - the equilibrium state(if it exists) is P{E)>*7(E)p(E)
ture of the FD plot obviously excludes a constant effective e 7
b y xexpE/T)exp(~E/Ty). For temperature§<Tg this is un-

temperature, our finding is still consistent with the predic- . e e
tions of Cugliandoloet al. insofar asthe relationship be- normalizable, and cannot exist; the lifetime averaged over
the prior(7), is infinite. Following a quench tI<Tg, the

tween correlation and response is the same for aged an h d but | 3 Thi
weakly driven glassesThis finding is nontrivial since the system never reaches a steady ;tate, ut '”Ste?‘ ages. This
an be seen from the time evolution B{E,t,,), which can

shapes of the relaxation spectra for the aging and weakl X ) :
driven trap models differ strongly from each other. e obtained exactly from Eq3) (with Y(t,) determined

We start(Sec. 1) by defining the trap model and summa- S€lf-consistently by enforcing normalization &#(E,t,)
fising the aging FD predictions of ReR1]. We then(Sec.  [18,19). At large timest,— o a scaling limit is reached in
IIl) derive exact expressions for the autocorrelation and re¥hich P(7.t,) =[T/7(E)]P(E.t,) is concentrated entirely
sponse functions for an arbitrary observaié the steadily — on traps of lifetimer=O(t,): the scaling distributiorP(2)
driven regime. Using these, we calculate the limiting driven=TP(E), where z=E/T—In(t,) is shown in Fig. 1. The
FD relation, for neutral observables that are uncorrelatednodel thus has just one characteristic time scale, which
with the average energy. We show that this relation is theggrows linearly with the age,,. [In contrast, forT>T all
same(to within logarithmic correctionsas its aging counter- relaxation processes occur on time scaligg).] In what
part (Sec. IV). We then(Sec. \j consider robustness of this follows, we rescale all energies such tigt=1, and times
correspondence with respect ( changes in the driving so thatrg=1.
mechanism andii) non-neutrality of the observable, before  Driving was first incorporated into the model in order to
concluding. study the rheology of “soft glassy materials.” Although we

are not directly interested in rheology here, we use the same
Il. THE TRAP MODEL: DRIVING driving rules which are defined as follows. Each particle is
assigned its own local elastic “straini} with a correspond-

The trap mode[18] comprises an ensemble of uncoupleding “stress” kl. Each time the particle hopkjs set to zero.
particles exploring a spatially un_stru_ctured landscape ofetween hops] =y where y is the rate of external driving
(free) energy traps by thermal activation. The tops of the(“straining"). A particle in a trap of depttE strained byl
traps are at_a common energy level and Fhew_deﬁthave @  gees a reduced effective energy barker 1kI2, so that
“prior” distribution p(E) (E>0). A particle in a trap of
depthE escapes on a time scatéE) = 7oexpE/T) and hops ,
into another trap, the depth of which is drawn at random DP(E,l,t)=—7 YE)e"?TP+Y(t)p(E)5(l). (4)

107

z=E/T-log(t,) or z=E/T+log(y)

in which the first(seconglterm on the RHSright-hand sidg
represents hops out dfnto) traps of depthE, and Y(t)
=(7"X(E))p(ey is the average hopping rate.
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In this equations~*(E)e¥”?T is the strain-enhanced coun- < T Ry 1 03 o VUM
terpart of the “bare” activation rate™ *(E) defined above I ]
for the undriven model, an®, is the convected derivative %8 iy
D.=d,+ yd,. Equation(4) (integrated orl) reduces to Eq. o6k \‘ ) 0.2 .
(3) for y=0, as required. In the following we rescdlsuch  ~ | ‘\‘ ) 1z
thatk=1. 04}k Vo 029

For steady driving = const) aging is interrupted, and a : \\ 0.1 028 7
TTI steady state is restored. To write down the steady-state 0.2 N
distribution, defineS(l,1,,E) as the probability for a par- ]
ticle that starts off with straih; and in a trap of deptk not Oty toum tul 0l Luum ol Ll L

o . o - - 0 02 0.4 0608 1

to hop until its strain has reachésl From Eq.(4), this is o oyt e ovets c

FIG. 2. (a) correlator andb) response vs. scaled time for the
. 5 neutral observabld?(E)=1 in the driven mode(solid lineg and
aging model(dashed lines calculated from the exact analytical
expressions in the text and in Rg21]. For the aging case, waiting
timest,,=10°, 10f, 1¢°, 1¢f are shown(but are indistinguishable
from each other for the driven case shear rates=1073, 1074,
v 1075, 10 ® are shown(also indistinguishab)e As an independent
Pm(E,|)=.;.°p(E)S(0,|,E). (6) check, we also show the driven correlator and responsé/ at
Y =103 calculated from waiting time Monte Carlo simulation. Eor
) this is indistinguishable from the exact results @in (a); for y it
Here Y.~7' T is the steady-state average hopping rateappears as the jagged line ih). () FD plots of correlator vs.
which can be determined self-consistently by enforcing norsesponse for the driven cagsolid lineg and aging casédashed
malization of P..(E,l). [This is most conveniently done by lines) constructed from the exact results @,(b); the inset is

changing variables tor=expE/T) which gives p(7) zoomed on a small region of the main plot. For the driven case
~71T] In the limit 'y—>0, the energy distribution (solid lineg, driving rate decreases downwards at fixedrhe tem-

P.(E)=fdI P..(E,l) approaches a scaling limit in which all Peratrer=0-3.
relaxation times areO(1/y). The scaling distribution
P.(2)=TP.(E), where z=E/T+In(y) differs strongly
from its aging counterpaf®(z), as shown in Fig. 1.

1 I2 12
S(Il,lz,E):eX _T(E)’yﬁldlex%ﬁ)

In terms of this quantity, the steady-state distribution of Eq
(4) can then be written as

upon the functional forms of the mean(E) and variance
A?(E) of the distributiono(m|E). For the purposes of this
paper we are interested only in observables wit{E) =0
and (within thesg mainly the neutral observable for which
the variance is uncorrelated with energy(E)=const&1.

FDT can be studied by assigning to each trap, in additiodn this case, in the simultaneous lintif—c with t—oo,
to its depthE, a value for an(arbitrary observablem[21].  C(t.ty) andx(t,t,) depend on time only through the scaling
The trap population is then characterized by the joint priorvariable ¢—t,)/t,, as shown in Figs. @), 2(b). The corre-
distribution o(m|E) p(E), whereo(m|E) is the distribution ~sponding FD plot is shown in Fig.(@.

IIl. CORRELATION AND RESPONSE

of macross traps of given fixed enerfy The dynamics then In the steadily driven regime, TTI is restoréd:and y do
obey not depend explicitly upon the waiting tintg, but only on
the measurement intervakt,,, so we sett,=0 without
D,P(E,m,I,t)= — r }(E,m)e"2Tp loss of generality. For observables witfi{E) =0, the auto-
correlation function is exactly
+Y()p(E)s(l)a(m[E), (7)

where the activation times are modified by a small field . > *

conjugate tom as 7(E,m) = 7(E)expmhT). This particular C(t,y)= Ltdljo dEA*(E)P.(E,). 8

form of 7(E,m) is one of several possible choices that all

maintain detailed balance under zero-driving conditions

[20,23. We adopt it because, in the spirit of the unperturbedl his can be understood as follows. When any particle hops,

model (h:O), it ensures that the Jump rate between any thtS new value ofm is uncorrelated with the old one. At time

states depends only on the initial state, and not the final oné. therefore, only those particles that have not hopped since
In Ref.[21] we derived exact expressions for the two-timet=0 can contribute to the correlator, with weight(E).

autocorrelation and Step response functioﬁ$t,tw) and The fraction of such partides Wthh had strdirand trap

x(t,t,) in the aging regimet(,—«, t—« at fixedt/t,) of  depthE at timet=0 is P.(E,|)S(l,| + yt,E). From Eq.(4)

the undriven model ¥=0), following a quench into the this equals..(E,l + yt) and integration oh andE gives the

glass phase at timg,=0 from an initially infinite tempera- result, Eq.(8). [Alternatively, Eq.(8) can be understood by

ture. Each comprises two components that depend separatalcalling the driving dynamics: upon any hop, each particle
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resets its local strain to zero; between hops, the local strain The corresponding switch-on response function has con-
affinely follows the applied one. Therefore, the particles thatributions from both hopped and unhopped particles. The
have not hopped sinde=0 are just those that have strains contribution from hopped particles can be expressed as an
= 9t.] integral over the last hop time of each partidie,

€)

. * % t 1 yt—t') s?
t,v)=0dn|ho de dEJ dt’Y(h,t")mo(m|E)p(E)ex —.—J dsexr{— .
Xhog t:¥) = nln oJ_w . . (h,t")mo(m|E)p(E) F{ Em o o7

In this expressionY (h,t) =Y.+ 0O(h) is the fraction of par- —X(C=1)=x'(C=1)=—1 (thus reproducing the equilib-
ticles that last hopped at timg. Of these, a proportion rium FD form in this limiy and finish with a slopey’(C
o(m|E)p(E) chose energf and magnetizatiom. The sub- =0)=0 at an intercepy(C=0)=T. (We have confirmed
sequent survival probability over the intervidl=0---t is  these features analytically as well as numericalven be-
encoded by the exponential factor. In principle, the differentween these limits, these is little discernible difference be-
tiation on h has two contributions: one from the factor tween the aging and driven FD plots. This nontrivial result is
7(E,m) in the exponential, and the other frovifh,t). How-  consistent with the predictions of Cugliand@bal, that the
ever, the second gives zero, sinte,.mo(m|E)=0 for the  relationship between correlation and response should be the
zero-mean variables considered here. Adding the contribuisame in weakly driven and old aging glassy systems.
tion from particles that have not hopped since0, and In the inset of Fig. &), we show an expanded region of
doing some manipulation, we find finally the exact result the main FD plot. Despite the striking similarity of the aging
and driven FD relations, our numerics do nonetheless sug-

. o = A?(E) gest a small discrepancy. To investigate this further, we ex-
x(t,7)=j dEj dl- [P(E,) amined the behavior of=— x'(C) in the limit C—0. Set-
0 o yr(E) ting (t—t,)/t,=u for the aging model, we foun@~u~"
. I s? andX~u~1, henceX~CY" asu—w. Settingyt=v for the
_Pw(E’H?’t)]JO dsexr{E) (10 driven model, we foundC~uvT lexp(-v¥2) and X

~exd —v%2T], hence C~X"[In(1/X)]T" Y2 as y—o.
(into which we have absorbed a factd; as described Therefore, the driven and aging FD plots are indeed equiva-
above. lent in the limitC— 0, but only to within minor logarithmic
corrections. This explains the slight discrepancy seen in our
numerical data.

IV. FD PLOTS
Using the exact expressions of E¢8) and(10), we cal- V. ROBUSTNESS UNDER CHANGE OF DRIVING
culatedC(t,y) and x(t,y) numerically for the neutral ob- MECHANISM; NON-NEUTRAL OBSERVABLES

servableA?(E)=1. As an independent check, we calculated
each quantity by direct simulation, using a waiting time
Monte Carlo technique. The results are shown in Figa), 2 . i, ) L

g 43 neutrality of the observablen, and (ii) changes in driving

2(b). In the limit y—0, t—0 at fixedyt, C(t,y) andx(t,7)  mechanism. We start witki), considering observables for
depend ony andt only through the scaling variablet.  \which A2(E)=exphE/T) (which definesn), though still
AnaII)E/tlcaGIIy_, thlsEcanSbe Sdee_” for th_e co(;;zla;or b%/ SUl?St'mt'with m(E)=0. In this case, the overall amplitudeitial

|ng. g. 6 Into Eg. gn mtegratlng' y changing valug of the correlator depends explicitly on the waiting
variables tor, as described above. Thedep_endence from  time (or driving rate, even in the agingor weakly driven

the integral exactly cancels the prefactdr/y so that the limit. In order to obtain a limiting FD plot, the correlator and
only dependence o andt appears through the scaling vari- response must be normalized by the initial value of the cor-

able yt in the limit of the integral orl. A similar argument ~ relator. In the driven regime, therefore, we now pidt, )
applies to the response function. =x(t,y)/C(0,y) versusC(t,y)=C(t,y)/C(0,y), with t as

The scaling functionsC(yt) and x(yt) both differ ~the plotting parameter. In the aging case, for these non-
Strong|y from their aging Counterpartsompare the solid neutral Observables, care must be taken in ConStrUCting the
and dashed lines in Figs(d, 2(b)]. This is to be expected, FD plot. For neutral observables, the usual prescription is to
due to the obvious difference between tfsealed energy  Plot x(t,t,) versusC(t,t,) with t as the plotting parameter.
distributions of the driven and undriven models. RemarkablyFor non-neutral observables, however, we see from(Eq.
however, the driven FD relatiog(C) is strikingly similar to ~ that the slope of the FD plot is only guaranteed to coincide
its undriven counterpafFig. 2(c)]. Both start with a slope with X if we plot x(t,t,)=x(t,t,)/x(t,t) versusC(t,t,)

We now investigate the robustness of the equivalence be-
tween driven and aging FD relations with respectijaon-

011101-4



EQUIVALENCE OF DRIVEN AND AGING . .. PHYSICAL REVIEW E67, 011101 (2003

0.1F - S e S T — 03Fm—F——==-cL___ T y T —
- N\\\\ ] . '~'~.~‘ \\\\\
0.08 A el N
| \ | 0.2l s,s‘ \\ |
0.06F N ' SN
~ \ \‘ \
X r ‘\\ T X [ \,\ \\
0.04F ‘\‘ -1 '\.\\\\
L \“_ 0.1 B .\’\\\ T
0.02 H I \'Q\ ]
I 4 N\
O L | L 1 L 1 " 1 L 0 L 1 L 1 L 1 " 1 L
0 0.2 04 _ 06 0.8 1 0 0.2 04 0.6 0.8 1
C C
FIG. 3. FD plots for(i) the aging model witht=10°, 10 FIG. 4. FD plots for the neutral observable wiﬁ(E)zO,

(dashed lines; different values indistinguishable and (ii) the ~ A2?(E)=1 for (i) the aging model witht=10%, 10%, 10, 1¢f
driven model withy=10"3, 104, 107, 10°° (solid lines; differ-  (dashed lines; differerttvalues indistinguishableand (i) a driven
ent y values indistinguishablefor a non-neutral observable with model with the alternative driving dynamics of E(L1) for y

m(E)=0, A%(E)=expET) for n=0.2. The temperaturer ~ =107° 107% 10°° 10°° (dot-dashed lings The temperaturd
=0.3. =0.3.

=C(t,t,)/C(t,t) with t, as the plotting parametenThis . *
coincides with the usual prescription for neutral observables, x(ty)= fo dEA*(E)P-(E) 1+ -

: : y7(E)
as required. These normalized FD plots are shown for
=0.2 in Fig. 3, and are seen to differ strongly from each 1 .
other: equivalence of aging and driven FD relations does not X 1“”"{ _(TE) + VH ] (14)
hold in the trap model for non-neutral observables.

Finally, we consider robustness of the equivalence of ag-

ing and driven FDT with respect to a change in the drivingThe FD plot for the neutral observahi€(E)=1 is given in
mechanism. To do this, we consider a different drivingFig- 4, and seen to differ strongly from the corresponding FD
mechanism which adds an additional hopping process to thelot in the undriven model. Hence, the equivalence of the
trap model whose rate is independent of trap depth. This aging and d.”.ven FD rellatlons Is not pr'es.er\./ed for this
just has the effect of normalizing each hopping rate accorghange of driving mechanism. However, this is !|kely to t_)e_ a
: . . consequence of the fact that this second choice of driving
ing to 1/r—1/7+y. The dynamics are now mechanism does not in fact violate detailed balance, but
merely renormalises all the jump rates.

+y|P+Y(t) p(E)o(m|E)

(11)

1
a‘P(E'm’t):_[T(E,m)

VI. SUMMARY AND CONCLUSION

In this paper we studied the nonequilibrium FDT in the
glass phase of Bouchaud's trap mofi&8—20,7, extended
to incorporate the nonlinear driving mechanism of R&i.
After deriving exact expressions for the correlation and re-
sponse functions of a generic observalig,we compared
(120  the FD relation for a system driven steadily at rate-0
with that for an aging system at waiting timeyl/For “neu-
tral” observables that are uncorrelated with the system’s av-
The calculation of correlation and response functions is no rage energy, the dr!ven.and aging FD relf':mons are the same,
trivial since all survival probabilities are simple exponen- 0 within minor logarithmic corrections. This correspondence
tials: one finds dpes not apply to n'on-ne.u.tral observa_bles. Finally, we con-
' sidered an alternative driving mechanism that renormalises
all the hopping rates according tort4 1/7+ . In this case,
) % 5 1 . the aging and driven FD relations differ strongly, even for
C(t,y)= fo dEA(E)P..(E)exp — EJF Y|t neutral observables. Although this is apparently at odds with
(13) our central result, it is likely to result from the fact that this
trivial driving mechanism does not violate detailed balance.
Further research is certainly needed, however, to understand
whether other conditions are required on driving mechanisms

with a steady-state energy distribution given by

Y..p(E)

and
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in order to get steady-state behavior related to that of unvalue — X, of the slope fotC—0 could be used to define an

driven aging systems. effective temperature. Further work is needed to delineate
We return finally to address the fact that the FD relationamore fully the class of finite-dimensional driven glassy mod-

are rounded in this model, thus excluding a single effectiveels that exhibit this behavior.

temperature within the aging or driven time sect@nsth Note addedWe have recently become aware that Ludovic

relaxation timesO(t,) or O(y), respectively. Similarly ~ Berthier has studied FDT in the driven EA model, and found

“rounded” FDT plots have recently been found in coarsen-FD plots the same as in the aging model, with agreement
ing models at criticalityf 24]; the limiting value— X, of the ~ between two different observabl@snpublished
slope forC— 0 was there shown to be a universal amplitude
ratio. It is possible that at least thi§, could define a sen-
sible T¢, and in fact both our limiting FDT plot¢for the
first driving mechanismshare a common valu§,,=0. Financial support from EPSRCSMF) and the Nuffield

In conclusion, the FD relation between correlation andFoundation(PS, Grant No. NAL/00361/Gis gratefully ac-
response is the same, to within logarithmic corrections, in th&nowledged. This work was supported in part by the Na-
aging and driven trap models. We suggest that the limitingional Science Foundation under Grant No. PHY99-07949.
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